If $A$ and $B$ are two independent events such that $P\,(A) = 0.40,\,\,P\,(B) = 0.50.$ Find $P$ (neither $A$ nor $B$)
$0.9$
$0.1$
$0.2$
$0.3$
Given $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$. Find $P(A $ or $B),$ if $A$ and $B$ are mutually exclusive events.
If $A$ and $B$ are two events such that $P\left( {A \cup B} \right) = P\left( {A \cap B} \right)$, then the incorrect statement amongst the following statements is
The probabilities of three mutually exclusive events are $\frac{2}{3} , \frac{1}{4}$ and $\frac{1}{6}$. The statement is
If the probability of $X$ to fail in the examination is $0.3$ and that for $Y$ is $0.2$, then the probability that either $X$ or $Y$ fail in the examination is
In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student opted for $NCC$ or $NSS$.