यदि $A$ तथा $B$ दो स्वतंत्र घटनाएँ हो, जहाँ $P\,(A) = 0.40,\,\,P\,(B) = 0.50.$ तो $P$ (न $A$ और न $B$) ज्ञात कीजिए
$0.9$
$0.1$
$0.2$
$0.3$
यदि $P ( A )=\frac{3}{5}, P ( B )=\frac{1}{5}$ और $A$ तथा $B$ स्वतंत्र घटनाएँ हैं तो $P ( A \cap B )$ ज्ञात कीजिए।
एक कक्षा के $60$ विद्यार्थियों में से $30$ ने एन. सी. सी. ( $NCC$ ), $32$ ने एन. एस. एस. $(NSS)$ और $24$ ने दोनों को चुना है। यदि इनमें से एक विद्यार्थी यादृच्छया चुना गया है तो प्रायिकता ज्ञात कीजिए कि
विद्यार्थी ने एन.एस.एस. को चुना है किंतु एन.सी.सी. को नहीं चुना है।
दो पासे स्वतंत्र रुप से फेंके जाते हैं। माना पहले पासे पर प्रकट होने वाली संख्या के दूसरे पासे पर प्रकट होने वाली संख्या से कम होने की घटना $\mathrm{A}$ है, पहले पासे पर सम संख्या तथा दसरे पासे पर विषम संख्या के प्रकट होने की घटना $\mathrm{B}$ है और पहले पासे पर विषम संख्या तथा दूसरे पासे पर सम संख्या के प्रकट होने की घटना $\mathrm{C}$ है। तो
यदि $A$ व $B$ दो घटनायें इस प्रकार हैं कि $P(A) = \frac{1}{2}$ व $P(B) = 2/3,$ तो
$A$ तथा $B$ एक यादृच्छिक प्रयोग की दो घटनाएँ हैं और $P\,(A) = 0.25$, $P\,(B) = 0.5$ तथा $P\,(A \cap B) = 0.15,$ तो $P\,(A \cap \bar B) = $