Let $A$ and $B$ are two events and $P(A') = 0.3$, $P(B) = 0.4,\,P(A \cap B') = 0.5$, then $P(A \cup B')$ is
$0.5$
$0.8$
$1$
$0.1$
If the odds against an event be $2 : 3$, then the probability of its occurrence is
If $A$ and $B$ are two independent events such that $P(A) > 0.5,\,P(B) > 0.5,\,P(A \cap \bar B) = \frac{3}{{25}},\,P(\bar A \cap B) = \frac{8}{{25}}$ , then $P(A \cap B)$ is
The probability of happening at least one of the events $A$ and $B$ is $0.6$. If the events $A$ and $B$ happens simultaneously with the probability $0.2$, then $P\,(\bar A) + P\,(\bar B) = $
The probabilities of three events $A , B$ and $C$ are given by $P ( A )=0.6, P ( B )=0.4$ and $P ( C )=0.5$ If $P ( A \cup B )=0.8, P ( A \cap C )=0.3, P ( A \cap B \cap$ $C)=0.2, P(B \cap C)=\beta$ and $P(A \cup B \cup C)=\alpha$ where $0.85 \leq \alpha \leq 0.95,$ then $\beta$ lies in the interval
Probability of solving specific problem independently by $A$ and $B$ are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that the problem is solved.