Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that both balls are red.
Total number of balls $=18$
Number of red balls $=8$
Number of black balls $=10$
Probability of getting a red ball in the first draw $=\frac{8}{18}=\frac{4}{9}$
The ball is replaced after the first draw.
$\therefore$ Probability of getting a red ball in the second draw $=\frac{8}{18}=\frac{4}{9}$
Therefore, probability of getting both the balls red $=\frac{4}{9} \times \frac{4}{9}=\frac{16}{81}$
If $A$ and $B$ are arbitrary events, then
In two events $P(A \cup B) = 5/6$, $P({A^c}) = 5/6$, $P(B) = 2/3,$ then $A$ and $B$ are
Let $A$ and $B$ be two events such that $P\,(A) = 0.3$ and $P\,(A \cup B) = 0.8$. If $A$ and $B$ are independent events, then $P(B) = $
Given that the events $A$ and $B$ are such that $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ and $P(B)=p .$ Find $p$ if they are independent.
The probability of happening at least one of the events $A$ and $B$ is $0.6$. If the events $A$ and $B$ happens simultaneously with the probability $0.2$, then $P\,(\bar A) + P\,(\bar B) = $