The odds against a certain event is $5 : 2$ and the odds in favour of another event is $6 : 5$. If both the events are independent, then the probability that at least one of the events will happen is

  • A

    $\frac{{50}}{{77}}$

  • B

    $\frac{{52}}{{77}}$

  • C

    $\frac{{25}}{{88}}$

  • D

    $\frac{{63}}{{88}}$

Similar Questions

Three athlete $A, B$ and $C$ participate in a race competetion. The probability of winning $A$ and $B$ is twice of winning $C$. Then the probability that the race win by $A$ or $B$, is

In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student has opted $NSS$ but not $NCC$.

If $A$ and $B$ are two events such that $P\left( {A \cup B} \right) = P\left( {A \cap B} \right)$, then the incorrect statement amongst the following statements is

  • [JEE MAIN 2014]

Two persons $A$ and $B$ throw a (fair)die (six-faced cube with faces numbered from $1$ to $6$ ) alternately, starting with $A$. The first person to get an outcome different from the previous one by the opponent wins. The probability that $B$ wins is

  • [KVPY 2014]

Given two independent events $A$ and $B$ such $P(A)=0.3,\,P(B)=0.6 .$ Find  $P($ neither $A$or $B)$