Gujarati
14.Probability
normal

If $A$ and $B$ are arbitrary events, then

A

$P(A \cap B) \ge P(A) + P(B)$

B

$P(A \cup B) \le P(A) + P(B)$

C

$P(A \cap B) = P(A) + P(B)$

D

None of these

Solution

(b) $P(A \cup B) = P(A) + P(B) – P(A \cap B) \le P(A) + P(B)$,$(\because \,\,P(A \cap \,B) \geqslant \,0)$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.