- Home
- Standard 11
- Mathematics
14.Probability
normal
If $A$ and $B$ are arbitrary events, then
A
$P(A \cap B) \ge P(A) + P(B)$
B
$P(A \cup B) \le P(A) + P(B)$
C
$P(A \cap B) = P(A) + P(B)$
D
None of these
Solution
(b) $P(A \cup B) = P(A) + P(B) – P(A \cap B) \le P(A) + P(B)$,$(\because \,\,P(A \cap \,B) \geqslant \,0)$.
Standard 11
Mathematics
Similar Questions
Fill in the blanks in following table :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.5$ | $0.35$ | ……… | $0.7$ |
easy