If two events $A$ and $B$ are such that $P\,(A + B) = \frac{5}{6},$ $P\,(AB) = \frac{1}{3}\,$ and $P\,(\bar A) = \frac{1}{2},$ then the events $A$ and $B$ are
Independent
Mutually exclusive
Mutually exclusive and independent
None of these
If $A$ and $B$ are two events such that $P\,(A \cup B)\, + P\,(A \cap B) = \frac{7}{8}$ and $P\,(A) = 2\,P\,(B),$ then $P\,(A) = $
If $A$ and $B$ are any two events, then $P(\bar A \cap B) = $
Let $E$ and $F$ be two independent events. The probability that both $E$ and $F$ happens is $\frac{1}{{12}}$ and the probability that neither $E$ nor $F$ happens is $\frac{1}{2},$ then
An unbiased coin is tossed. If the result is a head, a pair of unbiased dice is rolled and the number obtained by adding the numbers on the two faces is noted. If the result is a tail, a card from a well shuffled pack of eleven cards numbered $2, 3, 4,.......,12$ is picked and the number on the card is noted. The probability that the noted number is either $7$ or $8$, is
If $P(A) = P(B) = x$ and $P(A \cap B) = P(A' \cap B') = \frac{1}{3}$, then $x = $