If $A$ and $B$ are events such that $P(A \cup B) = 3/4,$ $P(A \cap B) = 1/4,$ $P(\bar A) = 2/3,$ then $P(\bar A \cap B)$ is

  • [AIEEE 2002]
  • A

    $\frac{5}{{12}}$

  • B

    $\frac{3}{8}$

  • C

    $\frac{5}{8}$

  • D

    $\frac{1}{4}$

Similar Questions

From the employees of a company, $5$ persons are selected to represent them in the managing committee of the company. Particulars of five persons are as follows :

S.No. Name Sex Age in years
$1.$ Harish $M$ $30$
$2.$ Rohan $M$ $33$
$3.$ Sheetal  $F$ $46$
$4.$ Alis $F$ $28$
$5.$ Salim $M$ $41$

A person is selected at random from this group to act as a spokesperson. What is the probability that the spokesperson will be either male or over $35$ years?

If $A$ and $B$ are two events such that $P(A) = \frac{1}{2}$ and $P(B) = \frac{2}{3},$ then

A coin is tossed twice. If events $A$ and $B$ are defined as :$A =$ head on first toss, $B = $ head on second toss. Then the probability of $A \cup B = $

Let $A$ and $B$ are two events and $P(A') = 0.3$, $P(B) = 0.4,\,P(A \cap B') = 0.5$, then $P(A \cup B')$ is

An electronic assembly consists of two subsystems, say, $A$ and $B$. From previous testing procedures, the following probabilities are assumed to be known :

$\mathrm{P}$ $( A$ fails $)=0.2$

$P(B$ fails alone $)=0.15$

$P(A$ and $ B $ fail $)=0.15$

Evaluate the following probabilities $\mathrm{P}(\mathrm{A}$ fails alone $)$