The probability that at least one of $A$ and $B$ occurs is $0.6$. If $A$ and $B$ occur simultaneously with probability $0.3$, then $P(A') + P(B') = $
$0.9$
$1.15$
$1.1$
$1.2$
The probabilities that a student passes in Mathematics, Physics and Chemistry are $m, p$ and $c$ respectively. On these subjects, the student has a $75\%$ chance of passing in at least one, a $50\%$ chance of passing in at least two and a $40\%$ chance of passing in exactly two. Which of the following relations are true
For any two events $A$ and $B$ in a sample space
The odds against a certain event is $5 : 2$ and the odds in favour of another event is $6 : 5$. If both the events are independent, then the probability that at least one of the events will happen is
Given $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$. Find $P(A $ or $B),$ if $A$ and $B$ are mutually exclusive events.
Two cards are drawn at random and without replacement from a pack of $52$ playing cards. Finds the probability that both the cards are black.