If $A$ and $B$ are two events, then the probability of the event that at most one of $A, B$ occurs, is
$P(A' \cap B) + P(A \cap B') + P(A' \cap B')$
$1 - P(A \cap B)$
$P(A') + P(B') + P(A \cup B) - 1$
All of the these
The probability that a student will pass the final examination in both English and Hindi is $0.5$ and the probability of passing neither is $0.1$. If the probability of passing the English examination is $0.75$, what is the probability of passing the Hindi examination?
The probability that $A$ speaks truth is $\frac{4}{5}$, while this probability for $B$ is $\frac{3}{4}$. The probability that they contradict each other when asked to speak on a fact
Let two fair six-faced dice $A$ and $B$ be thrown simultaneously. If $E_1$ is the event that die $A$ shows up four, $E_2 $ is the event that die $B$ shows up two and $E_3$ is the event that the sum of numbers on both dice is odd, then which of the following statements is NOT true $?$
Let $A$ and $B$ be two events such that $P\overline {(A \cup B)} = \frac{1}{6},P(A \cap B) = \frac{1}{4}$ and $P(\bar A) = \frac{1}{4},$ where $\bar A$ stands for complement of event $A$. Then events $A$ and $B$ are
$A$ and $B$ are two events such that $P(A)=0.54$, $P(B)=0.69$ and $P(A \cap B)=0.35.$ Find $P \left( A ^{\prime} \cap B ^{\prime}\right)$.