यदि $A$ व $B$ दो घटनायें हैं। उनमें से ज्यादा से ज्यादा एक घटना के घटित होने की प्रायिकता है
$P(A' \cap B) + P(A \cap B') + P(A' \cap B')$
$1 - P(A \cap B)$
$P(A') + P(B') + P(A \cup B) - 1$
उपरोक्त सभी
यदि घोड़े $A$ के किसी दौड़ को जीतने की प्रायिकता $1/4$ हो और घोड़े $B$ के उसी दौड़ को जीतने की प्रायिकता $1/5$ हो, तो उनमें से किसी एक के दौड़ को जीतने की प्रायिकता है
यदि $A$ और $B$ दो घटनायें हैं, तब $P(\bar A \cap B) = $
दो घटनाओं $A$ और $B$ के लिए $P(A) = x$, $P(B) = y,$ $P(A \cap B) = z,$ तब $P(\bar A \cap B)$ का मान है
माना कि $E$ व $F$ दो स्वतंत्र घटनायें हैं $E$ व $F$ दोनों के घटने की प्रायिकता $\frac{1}{{12}}$ है तथा "न तो $E$ और न $F$" से घटने की प्रायिकता $\frac{1}{2}$ है, तो
यदि $P\,(A) = 0.4,\,\,P\,(B) = x,\,\,P\,(A \cup B) = 0.7$ और घटनाएँ $A$ तथा $B$ स्वतन्त्र हों, तो $x= $