If $x$ is real , the maximum value of $\frac{{3{x^2} + 9x + 17}}{{3{x^2} + 9x + 7}}$ is
$\frac{1}{4}$
$1$
$41$
$\frac{{17}}{7}$
A real root of the equation ${\log _4}\{ {\log _2}(\sqrt {x + 8} - \sqrt x )\} = 0$ is
Let $S=\left\{\sin ^2 2 \theta:\left(\sin ^4 \theta+\cos ^4 \theta\right) x^2+(\sin 2 \theta) x+\right.$ $\left(\sin ^6 \theta+\cos ^6 \theta\right)=0$ has real roots $\}$. If $\alpha$ and $\beta$ be the smallest and largest elements of the set $S$, respectively, then $3\left((\alpha-2)^2+(\beta-1)^2\right)$ equals....................
The roots of the equation ${x^4} - 4{x^3} + 6{x^2} - 4x + 1 = 0$ are
The number of real solutions of the equation $|x{|^2}$-$3|x| + 2 = 0$ are