જો $x$ કોઇ વાસ્તવિક સંખ્યા હોય તો $\frac{{3{x^2} + 9x + 17}}{{3{x^2} + 9x + 7}}$ ની મહતમ કિંમત . . . હોય . .
$\frac{1}{4}$
$1$
$41$
$\frac{{17}}{7}$
જો $(x + 1)$ એ સમીકરણ ${x^4} - (p - 3){x^3} - (3p - 5){x^2}$ $ + (2p - 7)x + 6$ નો એક અવયવ હોય તો $p = $. . . .
જો $\sqrt {3{x^2} - 7x - 30} + \sqrt {2{x^2} - 7x - 5} = x + 5,\,$ તો $\,\,{\rm{x = \ldots }}..{\rm{ }}$
જો વિધેય $f(x)=\frac{2 x^2-3 x+8}{2 x^2+3 x+8}$ ની મહતમ અને ન્યૂનતમ કિમંતો નો સરવાળો $\frac{m}{n}$ છે કે જ્યાં $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$. તો $\mathrm{m}+\mathrm{n}$ ની કિમંત મેળવો.
ધારો કે $\mathrm{S}=\left\{x \in R:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$. તો $\mathrm{S}$ માં સભ્યો ની સંખ્યા ____________ છે.
જો સમીકરણ $x^3 - x - 1 = 0$ ના બીજ $\alpha$, $\beta$, $\gamma$ હોય, તો $\left( {\frac{{1\,\, + \,\,\alpha }}{{1\,\, - \,\,\alpha }}} \right)\left( {\frac{{1\,\, + \,\,\beta }}{{1\,\, - \,\,\beta }}} \right)\left( {\frac{{1\,\, + \,\,\gamma }}{{1\,\, - \,\,\gamma }}} \right)$ નું મૂલ્ય કેટલું થાય ?