- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
easy
If $A$ and $B$ are square matrices of size $n \times n$ such that ${A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)$ ,then which ofthe following will be always true ?
A
$A=B$
B
$AB=BA$
C
either of $A$ or $B$ is a zero matrix
D
either of $A$ or $B$ is identity matrix
(AIEEE-2006)
Solution
$A^{2}-B^{2}=(A-B)(A+B)$
$A^{2}-B^{2}=A^{2}+A B-B A-B^{2}$
$\Rightarrow A B=B A$
Standard 12
Mathematics