- Home
- Standard 12
- Mathematics
Let $A=\left[a_{i j}\right]$ be a $3 \times 3$ matrix, where
$a_{i j}= 1 , \quad\quad\text { if } i=j$
$\quad\quad-x ,\quad \text { if }|i-j|=1$
$\quad\quad2 x+1, \text { otherwise }$
Let a function f: $\mathrm{R} \rightarrow \mathrm{R}$ be defined as $\mathrm{f}(\mathrm{x})=\operatorname{det}(\mathrm{A})$. Then the sum of maximum and minimum values of $f$ on $R$ is equal to:
$\frac{20}{27}$
$-\frac{88}{27}$
$-\frac{20}{27}$
$\frac{88}{27}$
Solution
$\left[\begin{array}{ccc}1 & -x & 2 x+1 \\ -x & 1 & -x \\ 2 x+1 & -x & 1\end{array}\right]$
$|A|=4 x^{3}-4 x^{2}-4 x=f(x)$
$f(x)=4\left(3 x^{2}-2 x-1\right)=0$
$\Rightarrow x=1 ; x=\frac{-1}{3}$
$\therefore \underbrace{f(1)=-4}_{\text {min }} ; f ; \underbrace{f\left(-\frac{1}{3}\right)=\frac{20}{27}}_{\text {max }}$
$\text { Sum }=-4+\frac{20}{27}=-\frac{88}{27}$
Similar Questions
A manufacturer produces three products $x,\, y,\, z$ which he sells in two markets. Annual sales are indicated below:
Market | $x$ | $y$ | $z$ |
$I$ | $10,000$ | $2,000$ | $18,000$ |
$II$ | $6,000$ | $20,000$ | $8,000$ |
If unit sale prices of $x, \,y$ and $z$ are Rs. $2.50$, Rs. $1.50$ and Rs. $1.00,$ respectively, find the total revenue in each market with the help of matrix algebra.