જો $\left| {\begin{array}{*{20}{c}}{x - 4}&{2x}&{2x}\\{2x}&{x - 4}&{2x}\\{2x}&{2x}&{x - 4}\end{array}} \right| = \left( {A + Bx} \right){\left( {x - A} \right)^2},$ તો ક્રમયુકત જોડ $\left( {A,B} \right) = $. . . . .
$\left( { - 4,3} \right)$
$\left( { - 4,5} \right)$
$\left( {4,5} \right)$
$\left( { - 4, - 5} \right)$
જો $a, b, c$ એ વિષમબાજુ ત્રિકોણની બાજુઓ હોય તો $\left| \begin{array}{*{20}{c}}
a&b&c\\
b&c&a\\
c&a&b
\end{array} \right|$ એ . . .
$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}\,} \right| = $
નિશ્ચાયકનું મૂલ્ય શોધો : $\left|\begin{array}{ll}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$
વિધાન $-1$ : સમીકરણો $x + \left( {\sin \,\alpha } \right)y + \left( {\cos \,\alpha } \right)z = 0$ ;$x + \left( {\cos \,\alpha } \right)y + \left( {\sin \alpha } \right)z = 0$ ;$x - \left( {\sin \,\alpha } \right)y - \left( {\cos \alpha } \right)z = 0$ ; ને શૂન્યતર ઉકેલ એ $\alpha $ ની માત્ર એકજ કિમત કે જે અંતરાલ $\left( {0\,,\,\frac{\pi }{2}} \right)$ તેના માટે ધરાવે છે .
વિધાન $-2$ : સમીકરણ કે જે $\alpha $ સ્વરૂપ માં છે
$\left| {\begin{array}{*{20}{c}}
{\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha } \\
{\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha } \\
{\cos {\mkern 1mu} \alpha }&{ - \sin {\mkern 1mu} \alpha }&{ - \cos {\mkern 1mu} \alpha }
\end{array}} \right| = 0$
નું એક માત્ર બીજ અંતરાલ $\left( {0\,,\,\frac{\pi }{2}} \right)$ માં છે .
જો $\omega $ એ એકનું કાલ્પનિક ઘનમૂળ હોય તો $\Delta = \left| {\begin{array}{*{20}{c}}1&{2\omega }\\\omega &{{\omega ^2}}\end{array}} \right|$, તો ${\Delta ^2}$ = . . .