यदि $\left| {\begin{array}{*{20}{c}}{x - 4}&{2x}&{2x}\\{2x}&{x - 4}&{2x}\\{2x}&{2x}&{x - 4}\end{array}} \right| = \left( {A + Bx} \right){\left( {x - A} \right)^2},$ तो क्रमित युग्म $(A, B)$ बराबर है

  • [JEE MAIN 2018]
  • A

    $\left( { - 4,3} \right)$

  • B

    $\left( { - 4,5} \right)$

  • C

    $\left( {4,5} \right)$

  • D

    $\left( { - 4, - 5} \right)$

Similar Questions

यदि $\left|\begin{array}{ccc} a - b - c & 2 a & 2 a \\ 2 b & b - c - a & 2 b \\ 2 c & 2 c & c - a - b \end{array}\right|=( a + b + c )$ $( x + a + b + c )^{2}, x \neq 0$ तथा $a + b + c \neq 0$ हो, तो $x$ बराबर है 

  • [JEE MAIN 2019]

यदि $A$ एक $3 \times 3$ कोटि का वर्ग आव्युह है तो $|k A |$ का मान होगा:

माना सभी $\mathrm{a} \in \mathrm{R}-\{0\}$, जिनके लिए रैखिक समीकरण निकाय $a x+2 a y-3 a z=1$

$ (2 a+1) x+(2 a+3) y+(a+1) z=2 $

$ (3 a+5) x+(a+5) y+(a+2) z=3$

का केवल एक हल है तथा अनंत हल है, के समुच्चय क्रमशः $S_1$ तथा $S_2$ है। तो

  • [JEE MAIN 2023]

यदि रेखीय समीकरण निकाय

$2 x + y - z =7$

$x -3 y +2 z =1$

$x +4 y +\delta z = k$ है, जहाँ $\delta, k \in R$ के अनंत हल है, तो $\delta+ k$ बराबर है :

  • [JEE MAIN 2022]

$\Delta=\left|\begin{array}{ccc}0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0\end{array}\right|$ का मान ज्ञात कीजिए।