Gujarati
Hindi
Basic of Logarithms
medium

If $n = 1983!$, then the value of expression $\frac{1}{{{{\log }_2}n}} + \frac{1}{{{{\log }_3}n}} + \frac{1}{{{{\log }_4}n}} + ....... + \frac{1}{{{{\log }_{1983}}n}}$ is equal to

A

$-1$

B

$0$

C

$1$

D

$2$

Solution

(c) $\frac{1}{{{{\log }_2}n}} + \frac{1}{{{{\log }_3}n}} + \frac{1}{{{{\log }_4}n}} + ……. + \frac{1}{{{{\log }_{1983}}n}}$

= ${\log _n}2 + {\log _n}3 + {\log _n}4 + …… + {\log _n}1983$

= ${\log _n}(2.3.4….1983) = {\log _n}(1983!) = {\log _n}n = 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.