If $a = {\log _{24}}12,\,b = {\log _{36}}24$ and $c = {\log _{48}}36,$ then $1+abc$ is equal to

  • A

    $2ab$

  • B

    $2ac$

  • C

    $2bc$

  • D

    $0$

Similar Questions

If ${\log _{12}}27 = a,$ then ${\log _6}16 = $

The set of real values of $x$ for which ${\log _{0.2}}{{x + 2} \over x} \le 1$ is

If ${\log _{10}}x = y,$ then ${\log _{1000}}{x^2} $ is equal to

If $x = {\log _b}a,\,\,y = {\log _c}b,\,\,\,z = {\log _a}c$, then $xyz$ is

If ${x_n} > {x_{n - 1}} > ... > {x_2} > {x_1} > 1$ then the value of ${\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}.....{\log _{{x_n}}}{x_n}^{x_{n - 1}^{{ {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} ^{{x_1}}}}}$ is equal to