If $a = {\log _{24}}12,\,b = {\log _{36}}24$ and $c = {\log _{48}}36,$ then $1+abc$ is equal to

  • A

    $2ab$

  • B

    $2ac$

  • C

    $2bc$

  • D

    $0$

Similar Questions

Let $\quad \sum \limits_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c$, where $a, b, c \in Z$ and $e=\sum \limits_{n=0}^{\infty} \frac{1}{n!}$ Then $a^2-b+c$ is equal to $................$.

  • [JEE MAIN 2023]

If $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2,$ then $A$ is equal to

The number of solution of ${\log _2}(x + 5) = 6 - x$ is

The number ${\log _{20}}3$  lies in

If ${1 \over {{{\log }_3}\pi }} + {1 \over {{{\log }_4}\pi }} > x,$ then $x$ be