- Home
- Standard 11
- Mathematics
Basic of Logarithms
hard
If $a = {\log _{24}}12,\,b = {\log _{36}}24$ and $c = {\log _{48}}36,$ then $1+abc$ is equal to
A
$2ab$
B
$2ac$
C
$2bc$
D
$0$
Solution
(c) $a = {\log _{24}}12 = {{\log 12} \over {\log 24}} = {{2\log 2 + \log 3} \over {3\log 2 + \log 3}}$
$b = {\log _{36}}24 = {{3\log 2 + \log 3} \over {2(\log 2 + \log 3)}}$
$c = {\log _{48}}36 = {{2(\log 2 + \log 3)} \over {4\log 2 + \log 3}}$
$\therefore abc = {{2\,\,\log 2 + \log 3} \over {4\log 2 + \log 3}}$
==> $1 + abc = {{6\log 2 + 2\log 3} \over {4\log 2 + \log 3}} = 2.{{3\log 2 + \log 3} \over {4\log 2 + \log 3}} = 2bc$.
Standard 11
Mathematics