If ${1 \over 2} \le {\log _{0.1}}x \le 2$ then
The maximum value of $x$ is $1/\sqrt {10} $
$x$ lies between $1/100$ and $1/\sqrt {10} $
The minimum value of $x$ is $1/100$
All of These
The value of $6+\log _{\frac{3}{2}}\left(\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \sqrt{4-\frac{1}{3 \sqrt{2}} \ldots}}}\right)$ is
If ${\log _{1/\sqrt 2 }}\sin x > 0,x \in [0,\,\,4\pi ],$ then the number of values of $x$ which are integral multiples of ${\pi \over 4},$ is
If ${a^x} = b,{b^y} = c,{c^z} = a,$ then value of $xyz$ is
${\log _4}18$ is
$\log ab - \log |b| = $