If ${\log _7}2 = m,$ then ${\log _{49}}28$ is equal to
$2\,(1 + 2m)$
${{1 + 2m} \over 2}$
${2 \over {1 + 2m}}$
$1 + m$
If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1)$ then $x \ne 1$ lies in
The value of ${(0.05)^{{{\log }_{_{\sqrt {20} }}}(0.1 + 0.01 + 0.001 + ......)}}$ is
If ${1 \over 2} \le {\log _{0.1}}x \le 2$ then
Let $S$ be the sum of the digits of the number $15^2 \times 5^{18}$ in base $10$. Then,
Which is the correct order for a given number $\alpha $in increasing order