If ${\log _7}2 = m,$ then ${\log _{49}}28$ is equal to

  • A

    $2\,(1 + 2m)$

  • B

    ${{1 + 2m} \over 2}$

  • C

    ${2 \over {1 + 2m}}$

  • D

    $1 + m$

Similar Questions

Solution set of equation

$\left| {1 - {{\log }_{\frac{1}{6}}}x} \right| + \left| {{{\log }_2}x} \right| + 2 = \left| {3 - {{\log }_{\frac{1}{6}}}x + {{\log }_{\frac{1}{2}}}x} \right|$ is $\left[ {\frac{a}{b},a} \right],a,b, \in N,$ then the value of $(a + b)$ is

The set of real values of $x$ for which ${\log _{0.2}}{{x + 2} \over x} \le 1$ is

The solution of the equation ${\log _7}{\log _5}$ $(\sqrt {{x^2} + 5 + x} ) = 0$

If ${1 \over {{{\log }_3}\pi }} + {1 \over {{{\log }_4}\pi }} > x,$ then $x$ be

If $x, y, z \in R^+$ are such that $z > y > x > 1$ , ${\log _y}x + {\log _x}y = \frac{5}{2}$ and ${\log _z}y + {\log _y}z = \frac{{10}}{3}$ then ${\log _x}z$ is equal to