If ${\log _7}2 = m,$ then ${\log _{49}}28$ is equal to
$2\,(1 + 2m)$
${{1 + 2m} \over 2}$
${2 \over {1 + 2m}}$
$1 + m$
The value of ${(0.05)^{{{\log }_{_{\sqrt {20} }}}(0.1 + 0.01 + 0.001 + ......)}}$ is
If ${{\log x} \over {b - c}} = {{\log y} \over {c - a}} = {{\log z} \over {a - b}},$ then which of the following is true
Let $S$ be the sum of the digits of the number $15^2 \times 5^{18}$ in base $10$. Then,
The sum of all the natural numbers for which $log_{(4-x)}(x^2 -14x + 45)$ is defined is -
If ${\log _{10}}x + {\log _{10}}\,y = 2$ then the smallest possible value of $(x + y)$ is