If ${\log _7}2 = m,$ then ${\log _{49}}28$ is equal to

  • A

    $2\,(1 + 2m)$

  • B

    ${{1 + 2m} \over 2}$

  • C

    ${2 \over {1 + 2m}}$

  • D

    $1 + m$

Similar Questions

If $3^x=4^{x-1}$, then $x=$

$(A)$ $\frac{2 \log _3 2}{2 \log _3 2-1}$ $(B)$ $\frac{2}{2-\log _2 3}$ $(C)$ $\frac{1}{1-\log _4 3}$ $(D)$ $\frac{2 \log _2 3}{2 \log _2 3-1}$

  • [IIT 2013]

If ${{\log x} \over {b - c}} = {{\log y} \over {c - a}} = {{\log z} \over {a - b}},$ then which of the following is true

If ${1 \over 2} \le {\log _{0.1}}x \le 2$ then

The number ${\log _2}7$ is

  • [IIT 1990]

The number of integral solutions $x$ of $\log _{\left(x+\frac{7}{2}\right)}\left(\frac{x-7}{2 x-3}\right)^2 \geq 0$ is

  • [JEE MAIN 2023]