If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1)$ then $x \ne 1$ lies in

  • A

    $(1, 2)$

  • B

    $(0,1)$

  • C

    ($1$, $\infty $)

  • D

    ($2$, $\infty )$

Similar Questions

Solution set of equation

$\left| {1 - {{\log }_{\frac{1}{6}}}x} \right| + \left| {{{\log }_2}x} \right| + 2 = \left| {3 - {{\log }_{\frac{1}{6}}}x + {{\log }_{\frac{1}{2}}}x} \right|$ is $\left[ {\frac{a}{b},a} \right],a,b, \in N,$ then the value of $(a + b)$ is

$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)$ is equal to

The interval of $x$ in which the inequality ${5^{(1/4)(\log _5^2x)}}\, \geqslant \,5{x^{(1/5)(\log _5^x)}}$

Let $x, y$ be real numbers such that $x>2 y>0$ and $2 \log (x-2 y)=\log x+\log y$  Then, the possible value(s) of $\frac{x}{y}$

  • [KVPY 2020]

Let $S$ be the sum of the digits of the number $15^2 \times 5^{18}$ in base $10$. Then,

  • [KVPY 2018]