If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1),$ then $x$ lies in the interval
$(2,\infty )$
$(-2, -1)$
$(1, 2)$
None of these
The set of real values of $x$ for which ${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ is
The value of $\left(\left(\log _2 9\right)^2\right)^{\frac{1}{\log _2\left(\log _2 9\right)}} \times(\sqrt{7})^{\frac{1}{\log _4 7}}$ is. . . . . . .
$\sum\limits_{n = 1}^n {{1 \over {{{\log }_{{2^n}}}(a)}}} = $
${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $
If $x = {\log _b}a,\,\,y = {\log _c}b,\,\,\,z = {\log _a}c$, then $xyz$ is