Gujarati
4-1.Complex numbers
medium

यदि $|{a_k}| < 1,{\lambda _k} \ge 0$ के लिए $k = 1,\,2,....n$ एवं ${\lambda _1} + {\lambda _2} + ... + {\lambda _n} = 1,$ तब $|{\lambda _1}{a_1} + {\lambda _2}{a_2} + .... + {\lambda _n}{a_n}|$ का मान है

A

$1$

B

$1$ से बड़ा

C

$0$

D

$1$ से छोटा

Solution

(d) $|{\lambda _1}{a_1} + {\lambda _2}{a_2} + ….. + {\lambda _n}{a_n}|$

$ \le |{\lambda _1}{a_1}| + |{\lambda _2}{a_2}| + ….. + |{\lambda _n}{a_n}|$

$ = |{\lambda _1}||{a_1}| + ….. + |{\lambda _n}||{a_n}|$

$ = {\lambda _1}|{a_1}| + ….. + {\lambda _n}|{a_n}|\,$[ प्रत्येक ${\lambda _k}_. \ge 0$ के लिए]

$ < {\lambda _1} + ….. + {\lambda _n}$

[ $|{a_k}| < $1 और अत: ${\lambda _k}|{a_k}| < {\lambda _k}$के लिये

अत: $|{\lambda _1}{a_1} + {\lambda _2}{a_2} + ….. + {\lambda _n}{a_n}| < 1$.इस प्रकार $|{\lambda _1}{a_1} + ….. + {\lambda _n}{a_n}| < 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.