- Home
- Standard 11
- Mathematics
If $a,\;b,\;c,\;d$ and $p$ are different real numbers such that $({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0$, then $a,\;b,\;c,\;d$ are in
$A.P.$
$G.P.$
$H.P.$
$ab = cd$
Solution
(b) As given, $({a^2} + {b^2} + {c^2}){p^2} – 2(ab + bc + cd)p$
$ + ({b^2} + {c^2} + {d^2}) \le 0$ ….. $(i)$
But $L.H.S.$
$ = ({a^2}{p^2} – 2abp + {b^2}) + ({b^2}{p^2} – 2bcp + {c^2})$
$ + ({c^2}{p^2} – 2cdp + {d^2})$ $ = {(ap – b)^2} + {(bp – c)^2} + {(cp – d)^2} \ge 0$ …..$(ii)$
Since the sum of squares of real numbers is non-negative.
Therefore from $(i)$ and $(ii)$
$ \Rightarrow $${(ap – b)^2} + {(bp – c)^2} + {(cp – d)^2} = 0$
$ \Rightarrow $$ap – b = 0 = bp – c = cp – d \Rightarrow \frac{b}{a} = \frac{c}{b} = \frac{d}{c} = p$
$\therefore $$a,\;b,\;c,\;d$ are in $G.P.$