If $a,\;b,\;c,\;d$ and $p$ are different real numbers such that $({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0$, then $a,\;b,\;c,\;d$ are in

  • [IIT 1987]
  • A

    $A.P.$

  • B

    $G.P.$

  • C

    $H.P.$

  • D

    $ab = cd$

Similar Questions

If $x,\;y,\;z$ are in $G.P.$ and ${a^x} = {b^y} = {c^z}$, then

  • [IIT 1968]

Let $a_1, a_2, a_3 \ldots$. be a $G.P.$ of increasing positive terms. If $a_1 a_5=28$ and $a_2+a_4=29$, then $a_6$ is equal to

  • [JEE MAIN 2025]

Find the sum of the following series up to n terms:

$6+.66+.666+\ldots$

If the roots of the cubic equation $a{x^3} + b{x^2} + cx + d = 0$ are in $G.P.$, then

The sum to infinity of the progression $9 - 3 + 1 - \frac{1}{3} + .....$ is