यदि $a,\;b,\;c,\;d$ भिन्न वास्तविक संख्यायें ऐसी हों कि $({a^2} + {b^2} + {c^2}){p^2} - 2(ab + bc + cd)p + ({b^2} + {c^2} + {d^2}) \le 0$ हो, तब $a,\;b,\;c,\;d$ होंगे

  • [IIT 1987]
  • A

    समान्तर श्रेणी में

  • B

    गुणोत्तर श्रेणी में

  • C

    हरात्मक श्रेणी में

  • D

    $ab = cd$

Similar Questions

यदि किसी गुणोत्तर श्रेणी का प्रथम तथा $n$ वाँ पद क्रमशः $a$ तथा $b$ हैं, एवं $P , n$ पदों का गुणनफल हो, तो सिद्ध कीजिए कि $P ^{2}=(a b)^{n}$

श्रेणी $1 + \frac{2}{x} + \frac{4}{{{x^2}}} + \frac{8}{{{x^3}}} + ....\infty $ का योग एक नियत संख्या है, तब

श्रेणी $(\sqrt 2  + 1),\;1,\;(\sqrt 2  - 1)$ है

गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

मान ज्ञात कीजिए $\sum_{k=1}^{11}\left(2+3^{k}\right)$

यदि  किसी गुणोत्तर श्रेणी के $n$ पदों का योग $S$ एवं गुणनफल $P$ है तथा उनके व्युत्क्रमों का योग $R$ है, तो ${P^2}$ का मान है  

  • [IIT 1966]