Gujarati
8. Sequences and Series
hard

Let $a_1, a_2, a_3, \ldots .$. be a sequence of positive integers in arithmetic progression with common difference $2$. Also, let $b_1, b_2, b_3, \ldots .$. be a sequence of positive integers in geometric progression with common ratio $2$ . If $a_1=b_1=c$, then the number of all possible values of $c$, for which the equality

$2\left(a_1+a_2+\ldots .+a_n\right)=b_1+b_2+\ldots . .+b_n$

holds for some positive integer $n$, is. . . . . . . 

A

$1$

B

$5$

C

$8$

D

$7$

(IIT-2020)

Solution

Given $2\left( a _1+ a _2+\ldots . .+ a _{ n }\right)= b _1+ b _2+\ldots . .+ b _{ n }$

$\Rightarrow \quad 2 \times \frac{ n }{2}\left(2 c +( n -2) x _2\right)= c \left(\frac{2^{ n }-1}{2-1}\right)$

$\Rightarrow \quad 2 n ^2-2 n = c \left(2^{ n }-1-2 n \right)$

$\Rightarrow \quad c =\frac{2 n ^2-2 n }{2^{ n }-1-2 n } \in N$

$\text { So, }  2 n ^2-2 n \geq 2^{ n }-1-2 n$

$\Rightarrow \quad  2 n ^2+1 \geq 2^{ n } \Rightarrow n <7$

$\Rightarrow \quad  n \text { can be } 1,2,3, \ldots.$

Checking $c$ against these values of $n$

we get $c=12 \quad($ when $n=3)$

Hence number of such $c=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.