- Home
- Standard 12
- Mathematics
Let $\alpha $ and $\beta $ be the roots of the equation $x^2 + x + 1 = 0.$ Then for $y \ne 0$ in $R,$ $\left| {\begin{array}{*{20}{c}}
{y\, + \,1}&\alpha &\beta \\
\alpha &{y\, + \,\beta }&1\\
\beta &1&{y\, + \,\alpha }
\end{array}} \right|$ is equal to
$y\,({y^2} - \,3)$
${y^3} - \,1$
$y^3$
$y\,({y^2} - \,1)$
Solution
Roots of the equation ${x^2} + x + 1 = 0$ are $\alpha = \omega $ and $\beta = {\omega ^2}$ where $\omega ,{\omega ^2}$are complex cube roots of unity
$\therefore \Delta = \left| {\begin{array}{*{20}{c}}
{y + 1}&\omega &{{\omega ^2}}\\
\omega &{y + {\omega ^2}}&1\\
{{\omega ^2}}&1&{y + \omega }
\end{array}} \right|$
${R_1} \to {R_1} + {R_2} + {R_3}$
$ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
1&1&1\\
\omega &{y + {\omega ^2}}&1\\
{{\omega ^2}}&1&{y + \omega }
\end{array}} \right|$
Expanding along ${R_1}$, we get
$\Delta = y.{y^2} \Rightarrow D = {y^3}$
Or
If $\alpha = {\omega ^2},\beta = \omega $ we get same value or on expansion using $\alpha + \beta = – 1,\alpha \beta = 1$ we get value ${y^3}$.
Similar Questions
Let $\alpha, \beta$ and $\gamma$ be real numbers. consider the following system of linear equations
$x+2 y+z=7$
$x+\alpha z=11$
$2 x-3 y+\beta z=\gamma$
Match each entry in List – $I$ to the correct entries in List-$II$
List – $I$ | List – $II$ |
($P$) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma=28$, then the system has | ($1$) a unique solution |
($Q$) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma \neq 28$, then the system has | ($2$) no solution |
($R$) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma \neq 28$, then the system has |
($3$) infinitely many solutions |
($S$) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma=28$, then the system has | ($4$) $x=11, y=-2$ and $z=0$ as a solution |
($5$) $x=-15, y=4$ and $z=0$ as a solution |
Then the system has