$\left| {\,\begin{array}{*{20}{c}}1&1&1\\{\cos (nx)}&{\cos (n + 1)x}&{\cos (n + 2)x}\\{\sin (nx)}&{\sin (n + 1)x}&{\sin (n + 2)x}\end{array}\,} \right|$ is not depend
On $x$
On $n$
Both on $x$ and $n$
None of these
The determinant $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha + b}\\b&c&{b\alpha + c}\\{a\alpha + b}&{b\alpha + c}&0\end{array}\,} \right| = 0$, if $a,b,c$ are in
Let $P$ be a matrix of order $3 \times 3$ such that all the entries in $P$ are from the set $\{-1,0,1\}$. Then, the maximum possible value of the determinant of $P$ is. . . . . . .
Give the correct order of initials $T$ or $F$ for following statements. Use $T$ if statement is true and $F$ if it is false.
Statement $-1$ : If the graphs of two linear equations in two variables are neither parallel nor the same, then there is a unique solution to the system. Statement $-2$ : If the system of equations $ax + by = 0, cx + dy = 0$ has a non-zero solution, then it has infinitely many solutions.
Statement $-3$ : The system $x + y + z = 1, x = y, y = 1 + z$ is inconsistent. Statement $-4$ : If two of the equations in a system of three linear equations are inconsistent, then the whole system is inconsistent.
If $f(x) = \left| {\begin{array}{*{20}{c}}{x - 3}&{2{x^2} - 18}&{3{x^3} - 81}\\{x - 5}&{2{x^2} - 50}&{4{x^3} - 500}\\1&2&3\end{array}} \right|$ then $f(1).f(3) + f(3).f(5) + f(5).f(1)$=
For a non - zero, real $a, b$ and $c$ $\left| {\begin{array}{*{20}{c}}{\frac{{{a^2} + {b^2}}}{c}}&c&c\\a&{\frac{{{b^2} + {c^2}}}{a}}&a\\b&b&{\frac{{{c^2} + {a^2}}}{b}} \end{array}} \right|$ $= \alpha \, abc$, then the values of $\alpha$ is