- Home
- Standard 12
- Mathematics
If $a^2 + b^2 + c^2 = - 2$ and $f (x) = $ $\left| {\,\begin{array}{*{20}{c}}{1 + {a^2}x}&{(1 + {b^2})x}&{(1 + {c^2})x}\\{(1 + {a^2})x}&{1 + {b^2}x}&{(1 + {c^2})x}\\ {(1 + {a^2})x}&{(1 + {b^2})x}&{1 + {c^2}x}\end{array}\,} \right|$ then $f (x)$ is a polynomial of degree
$0$
$1$
$2$
$3$
Solution
$C_1 \rightarrow C_1 + C_2 + C_3$
$\left| {\,\begin{array}{*{20}{c}} {1 + 2x + x({a^2} + {b^2} + {c^2})}&{(1 + {b^2})x}&{(1 + {c^2})x}\\ {1 + 2x + x({a^2} + {b^2} + {c^2})}&{1 + {b^2}x}&{(1 + {c^2})x}\\ {1 + 2x + x({a^2} + {b^2} + {c^2})}&{(1 + {b^2})x}&{1 + {c^2}x} \end{array}\,} \right|$
$\left| {\,\begin{array}{*{20}{c}}1&{(1 + {b^2})x}&{(1 + {c^2})x}\\1&{1 + {b^2}x}&{(1 + {c^2})x}\\1&{(1 + {b^2})x}&{1 + {c^2}x} \end{array}\,} \right|$
$R_2 \rightarrow R-2 – R_1\, and\, R_3 \rightarrow R_3 – R_1$
$\left| {\,\begin{array}{*{20}{c}}1&{(1 + {b^2})x}&{(1 + {c^2})x}\\0&{1 – x}&0\\ 0&0&{1 – x}\end{array}\,} \right|$
$f (x) = (1 – x)^2 = 1 – 2x + x^2$