If $a^2 + b^2 + c^2 = - 2$ and $f (x) = $ $\left| {\,\begin{array}{*{20}{c}}{1 + {a^2}x}&{(1 + {b^2})x}&{(1 + {c^2})x}\\{(1 + {a^2})x}&{1 + {b^2}x}&{(1 + {c^2})x}\\ {(1 + {a^2})x}&{(1 + {b^2})x}&{1 + {c^2}x}\end{array}\,} \right|$ then $f (x)$ is a polynomial of degree
$0$
$1$
$2$
$3$
By using properties of determinants, show that:
$\left|\begin{array}{ccc}-a^{2} & a b & a c \\ b a & -b^{2} & b c \\ c a & c b & -c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$
By using properties of determinants, show that:
$\left|\begin{array}{ccc}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|=(5 x+4)(4-x)^{2}$
Using properties of determinants, prove that:
$\left| {\begin{array}{*{20}{l}}
{\sin \alpha }&{\cos \alpha }&{\cos (\alpha + \delta )} \\
{\sin \beta }&{\cos \beta }&{\cos (\beta + \delta )} \\
{\sin \gamma }&{\cos \gamma }&{\cos (\gamma + \delta )}
\end{array}} \right| = 0$
By using properties of determinants, show that:
$\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=\left(1-x^{3}\right)^{2}$
By using properties of determinants, show that:
$\left|\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x)$