- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
Let $D_1 =$ $\left| {\,\begin{array}{*{20}{c}}a&b&{a + b}\\c&d&{c + d}\\a&b&{a - b}\end{array}\,} \right|$ and $D_2 =$ $\left| {\,\begin{array}{*{20}{c}}a&c&{a + c}\\b&d&{b + d}\\a&c&{a + b + c}\end{array}\,} \right|$ then the value of $\frac{{{D_1}}}{{{D_2}}}$ where $b \ne 0$ and $ad \ne bc$, is
A
$-2$
B
$0$
C
$- 2b$
D
$2b$
Solution
Using $\rightarrow C_3 \rightarrow C_3 – (C_1 + C_2),$ $D_1 =$ $\left|{\,\begin{array}{*{20}{c}}a&b&{a + b}\\c&d&{c + d}\\a&b&{a – b}\end{array}\,} \right|$ and $D_2 = $ $\left| {\,\begin{array}{*{20}{c}}a&c&{a + c}\\b&d&{b + d}\\ a&c&{a + b + c}\end{array}\,} \right|$
$\therefore$ $\frac{{{D_1}}}{{{D_2}}}$ $=$ $\frac{{ – 2b(ad – bc)}}{{b(ad – bc)}}$ $=$ $- 2$
Standard 12
Mathematics