3 and 4 .Determinants and Matrices
easy

At what value of $x,$ will $\left| {\,\begin{array}{*{20}{c}}{x + {\omega ^2}}&\omega &1\\\omega &{{\omega ^2}}&{1 + x}\\1&{x + \omega }&{{\omega ^2}}\end{array}\,} \right| = 0$

A

$x = 0$

B

$x = 1$

C

$x = - 1$

D

None of these

Solution

(a) $\left| {\,\begin{array}{*{20}{c}}{x + {\omega ^2}}&\omega &1\\\omega &{{\omega ^2}}&{1 + x}\\1&{x + \omega }&{{\omega ^2}}\end{array}\,} \right| = 0$

Check at $x = 0,$ we get $\left| {\,\begin{array}{*{20}{c}}{{\omega ^2}}&\omega &1\\\omega &{{\omega ^2}}&1\\1&\omega &{{\omega ^2}}\end{array}\,} \right|$

= ${\omega ^2}({\omega ^4} – \omega ) – \omega ({\omega ^3} – 1) + 1({\omega ^2} – {\omega ^2})$

= ${\omega ^2}(\omega – \omega ) – \omega \,(1 – 1) + 0 = 0$ Or

$\Delta = \left| {\,\begin{array}{*{20}{c}}{1 + \omega + {\omega ^2} + x}&\omega &1\\{1 + \omega + {\omega ^2} + x}&{{\omega ^2}}&{1 + x}\\{1 + \omega + {\omega ^2} + x}&{x + \omega }&{{\omega ^2}}\end{array}\,} \right|$

by ${C_1} \to {C_1} + {C_2} + {C_3}$

$ = \,\left| {\,\begin{array}{*{20}{c}}x&\omega &1\\x&{{\omega ^2}}&{1 + x}\\x&{x + \omega }&{{\omega ^2}}\end{array}\,} \right|$, ($\because \,1 + \omega  + {\omega ^2} = 0$)

$= 0$, if $x = 0$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.