At what value of $x,$ will $\left| {\,\begin{array}{*{20}{c}}{x + {\omega ^2}}&\omega &1\\\omega &{{\omega ^2}}&{1 + x}\\1&{x + \omega }&{{\omega ^2}}\end{array}\,} \right| = 0$

  • A

    $x = 0$

  • B

    $x = 1$

  • C

    $x = - 1$

  • D

    None of these

Similar Questions

The value of the determinant $\left| {\,\begin{array}{*{20}{c}}a&{a\, + \,b}&{a\, + \,2b}\\{a\, + \,2b}&a&{a\, + \,b}\\{a\, + \,b}&{a\, + \,2b}&a\end{array}\,} \right|$ is

The parameter on which the value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2}}\\{\cos (p - d)x}&{\cos px}&{\cos (p + d)x}\\{\sin (p - d)x}&{\sin px}&{\sin (p + d)x}\end{array}\,} \right|$ does not depend upon

  • [IIT 1997]

Using properties of determinants, prove this:

$\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q\end{array}\right|=1$

The total number of distinct $x \in \mathbb{R}$ for which $\left|\begin{array}{ccc}x & x^2 & 1+x^3 \\ 2 x & 4 x^2 & 1+8 x^3 \\ 3 x & 9 x^2 & 1+27 x^3\end{array}\right|=10$ is

  • [IIT 2016]

By using properties of determinants, show that:

$\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=0$