The determinant $\left| {\begin{array}{*{20}{c}}{{b_1}\, + \,\,{c_1}}&{{c_1}\, + \,\,{a_1}}&{{a_1}\, + \,\,{b_1}}\\{{b_2}\, + \,\,{c_2}}&{{c_2}\, + \,\,{a_2}}&{{a_2}\, + \,\,{b_2}}\\{{b_3}\, + \,\,{c_3}}&{{c_3}\, + \,\,{a_3}}&{{a_3}\, + \,\,{b_3}} \end{array}} \right|$ $=$

  • A
    $\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right|$
  • B
    $2$ $\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right|$
  • C
    $3$ $\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right|$
  • D
    $4$ $\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right|$

Similar Questions

By using properties of determinants, show that:

$\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{3} & b^{3} & c^{3}
\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)$

By using properties of determinants, show that:

$\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=0$

Suppose $a_1, a_2, .......$ real numbers, with $a_1 \ne 0$. If $a_1, a_2, a_3, ..........$ are in $A.P$. then

If $\left| {\begin{array}{*{20}{c}}1&a&{{a^2}}\\1&x&{{x^2}}\\{{b^2}}&{ab}&{{a^2}} \end{array}} \right|$ $= 0$ , then :

Let $A$ be a $3 \times 3$ matrix with $\operatorname{det}( A )=4$. Let $R _{ i }$ denote the $i ^{\text {th }}$ row of $A$. If a matrix $B$ is obtained by performing the operation $R _{2} \rightarrow 2 R _{2}+5 R _{3}$ on $2 A ,$ then $\operatorname{det}( B )$ is equal to ...... .

  • [JEE MAIN 2021]