If $x + y = 3 - cos4\theta$ and $x - y = 4 \,sin2\theta$ then
$x^4 + y^4 = 9$
$\sqrt x \, + \,\sqrt y \, = \,16\,$
$x^3 + y^3 = 2(x^2 + y^2)$
$\sqrt x \, + \,\sqrt y \, = \,2$
If $\tan x = \frac{{2b}}{{a - c}}(a \ne c),$
$y = a\,{\cos ^2}x + 2b\,\sin x\cos x + c\,{\sin ^2}x$
and $z = a{\sin ^2}x - 2b\sin x\cos x + c{\cos ^2}x,$ then
Show that
$\tan 3 x \tan 2 x \tan x=\tan 3 x-\tan 2 x-\tan x$
If a $cos^3 \alpha + 3a \,cos\, \alpha \, sin^2\, \alpha = m$ and $asin^3\, \alpha + 3a \, cos^2\, \alpha \,sin\, \alpha = n$ . Then $(m + n)^{2/3} + (m - n)^{2/3}$ is equal to :
$\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = $
If $x + y + z = {180^o},$ then $\cos 2x + \cos 2y - \cos 2z$ is equal to