$\sin 4\theta $ can be written as
$4\sin \theta (1 - 2{\sin ^2}\theta )\sqrt {1 - {{\sin }^2}\theta } $
$2\sin \theta \cos \theta {\sin ^2}\theta $
$4\sin \theta - 6{\sin ^3}\theta $
None of these
$3\,\left[ {{{\sin }^4}\,\left( {\frac{{3\pi }}{2} - \alpha } \right) + {{\sin }^4}\,(3\pi + \alpha )} \right]$ $ - 2\,\left[ {{{\sin }^6}\,\left( {\frac{\pi }{2} + \alpha } \right) + {{\sin }^6}(5\pi - \alpha )} \right] = $
$\frac{{\tan A + \sec A - 1}}{{\tan A - \sec A + 1}} = $
$\sin 12^\circ \sin 48^\circ \sin 54^\circ = $
The value of $sin\,10^o$ $sin\,30^o$ $sin\,50^o$ $sin\,70^o$ is
If $x = \sin {130^o}\,\cos {80^o},\,\,y = \sin \,{80^o}\,\cos \,{130^o},\,\,z = 1 + xy,$which one of the following is true