$2\sin A{\cos ^3}A - 2{\sin ^3}A\cos A = $
$\sin 4A$
$\frac{1}{2}\sin 4A$
$\frac{1}{4}\sin 4A$
None of these
$\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = $
The value of $\frac{1}{4} \,\,tan \frac{\pi}{8} +\frac{1}{8} \,\,tan \frac{\pi}{16}+\frac{1}{16} \,\,tan \frac{\pi}{32}+.\,.\,.\,\infty $ terms is equal to-
$\sqrt {\frac{{1 - \sin A}}{{1 + \sin A}}} = $
If $\sin \alpha = \frac{{336}}{{625}}$ and $450^\circ < \alpha < 540^\circ ,$ then $\sin \left( {\frac{\alpha }{4}} \right) = $
If $A = 580^o$ then which one of the following is true