3.Trigonometrical Ratios, Functions and Identities
normal

If $x\, sin \theta = y\, sin \, \left( {\theta \,\, + \,\,\frac{{2\,\pi }}{3}} \right) = z\, sin \, \left( {\theta \,\, + \,\,\frac{{4\,\pi }}{3}} \right)$ then :

A

$x + y + z = 0$

B

$xy + yz + zx = 0$

C

$xyz + x + y + z = 1$

D

none

Solution

$\frac{x}{y}\,\, = \,\frac{{\sin 2\pi /3\,.\,\,\cos \theta \,\, + \,\cos 2\pi /3\,.\sin \theta }}{{\sin \theta }}$ 

$=$ $\frac{1}{2}\,\left[ {\frac{{\sqrt 3 \,\cos \theta \, – \,\sin \theta }}{{\sin \theta }}} \right]$

$=$$\frac{{\sqrt 3 }}{2}\,\cot \theta \, – \,\frac{1}{2}$ ….$(1)$

$|||^{1y}$   $\frac{x}{z}\,\, = \,\,\frac{{\sin \theta \,.\,\cos 4\pi /3\,\, + \,\,\cos \theta \,.\,\sin 4\pi /3}}{{\sin \theta }}$ 

$=$ $ – \,\,\frac{1}{2}\,\, – \,\,\frac{{\sqrt 3 }}{2}\,\,\cot \theta $ ….$(2)$

$\frac{x}{y}\,\, + \,\,\frac{x}{z}\,\, = \,\, – 1$

$\Rightarrow xz + xy + yz = 0$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.