If $x\, sin \theta = y\, sin \, \left( {\theta \,\, + \,\,\frac{{2\,\pi }}{3}} \right) = z\, sin \, \left( {\theta \,\, + \,\,\frac{{4\,\pi }}{3}} \right)$ then :
$x + y + z = 0$
$xy + yz + zx = 0$
$xyz + x + y + z = 1$
none
If $A + B + C = {180^o},$ then the value of $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}$ will be
$96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$ is equal to$......$.
Prove that $\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}=\cot 3 x$
If $\alpha + \beta + \gamma = 2\pi ,$ then
The expression $\frac{{\cos 6x + 6\cos 4x + 15\cos 2x + 10}}{{\cos 5x + 5\cos 3x + 10\cos x}}$ is equal to