If $x = \sin {130^o}\,\cos {80^o},\,\,y = \sin \,{80^o}\,\cos \,{130^o},\,\,z = 1 + xy,$which one of the following is true
$x > 0,\,\,y > 0,\,\,z > 0$
$x > 0,\,\,y < 0,\,\,0 < z < 1$
$x > 0,\,\,y < 0,\,\,z > 1$
$x < 0,\,\,y < 0,\,0 < z < 1$
$\sin {163^o}\cos {347^o} + \sin {73^o}\sin {167^o} = $
$\tan 3A - \tan 2A - \tan A = $
Value of $\frac{{4\sin {9^o}\sin {{21}^o}\sin {{39}^o}\sin {{51}^o}\sin {{69}^o}\sin {{81}^o}}}{{\sin {{54}^o}}}$ is equal to
If $\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha $and $\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha $, then $\theta$ is equal to
If $\tan A = \frac{1}{2},\tan B = \frac{1}{3},$ then $\cos 2A = $