If $x = \sin {130^o}\,\cos {80^o},\,\,y = \sin \,{80^o}\,\cos \,{130^o},\,\,z = 1 + xy,$which one of the following is true

  • A

    $x > 0,\,\,y > 0,\,\,z > 0$

  • B

    $x > 0,\,\,y < 0,\,\,0 < z < 1$

  • C

    $x > 0,\,\,y < 0,\,\,z > 1$

  • D

    $x < 0,\,\,y < 0,\,0 < z < 1$

Similar Questions

$\sin {163^o}\cos {347^o} + \sin {73^o}\sin {167^o} = $

$\tan 3A - \tan 2A - \tan A = $

Value of $\frac{{4\sin {9^o}\sin {{21}^o}\sin {{39}^o}\sin {{51}^o}\sin {{69}^o}\sin {{81}^o}}}{{\sin {{54}^o}}}$ is equal to

If $\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha $and $\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha $, then $\theta$ is equal to

If $\tan A = \frac{1}{2},\tan B = \frac{1}{3},$ then $\cos 2A = $