3.Trigonometrical Ratios, Functions and Identities
easy

If $x = \sin {130^o}\,\cos {80^o},\,\,y = \sin \,{80^o}\,\cos \,{130^o},\,\,z = 1 + xy,$which one of the following is true

A

$x > 0,\,\,y > 0,\,\,z > 0$

B

$x > 0,\,\,y < 0,\,\,0 < z < 1$

C

$x > 0,\,\,y < 0,\,\,z > 1$

D

$x < 0,\,\,y < 0,\,0 < z < 1$

Solution

(b) $x = \sin {130^o}\cos {80^o},$

$y = \sin {80^o}\cos {130^o}$

==> $x = \cos {40^o}\cos {80^o},\,\,\,y = – \sin {80^o}\sin {40^o}$ 

So, $x > 0$ and $y < 0$ and $xy < 0$ 

Now, $z = 1 + xy$ ==> $0 < z < 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.