Prove that $\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that

$\sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right), \cos ^{2} A-\sin ^{2} A=\cos 2 A$

$\therefore$ $L.H.S.$ $=\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}$

$=\frac{2 \cos \left(\frac{x+3 x}{2}\right) \sin \left(\frac{x-3 x}{2}\right)}{-\cos 2 x}$

$=\frac{2 \cos 2 x \sin (-x)}{-\cos 2 x}$

$=-2 \times(-\sin x)$

$=2 \sin x= R . H.S.$

Similar Questions

If $A + B + C = {180^o},$ then the value of $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}$ will be

If $A, B, C$ are angles of a triangle, then $\sin 2A + \sin 2B - \sin 2C$ is equal to

The sines of two angles of a triangle are equal to $\frac{5}{{13}}$ & $\frac{{99}}{{101}}.$ The cosine of the third angle is :

If $a{\sin ^2}x + b{\cos ^2}x = c,\,\,$$b\,{\sin ^2}y + a\,{\cos ^2}y = d$ and $a\,\tan x = b\,\tan y,$ then $\frac{{{a^2}}}{{{b^2}}}$ is equal to

$\cos \frac{\pi }{5}\cos \frac{{2\pi }}{5}\cos \frac{{4\pi }}{5}\cos \frac{{8\pi }}{5} = $