If $A = 580^o$ then which one of the following is true
$2\,\sin \left( {\frac{A}{2}} \right)\,\, = \,\,\sqrt {1 + \sin A} \, - \,\sqrt {1 - \sin A} $
$2\sin \left( {\frac{A}{2}} \right)\, = \,\, - \,\,\sqrt {1 + \sin A} \,\, + \,\sqrt {1 - \sin A} $
$2\sin \left( {\frac{A}{2}} \right)\, = \,\, - \,\,\sqrt {1 + \sin A} \,\, - \,\sqrt {1 - \sin A} $
$2\sin \left( {\frac{A}{2}} \right)\, = \,\,\,\,\sqrt {1 + \sin A} \,\, + \,\sqrt {1 - \sin A} $
Let $S=\left\{x \in(-\pi, \pi): x \neq 0, \pm \frac{\pi}{2}\right\}$. The sum of all distinct solutions of the equation $\sqrt{3} \sec x+\operatorname{cosec} x+2(\tan x-\cot x)=0$ in the set $S$ is equal to
If $A$ and $B$ are complimentary angles, then :
$\frac{{\sqrt {1 + \sin x} + \sqrt {1 - \sin x} }}{{\sqrt {1 + \sin x} - \sqrt {1 - \sin x} }} = $ (when $x$ lies in $II^{nd}$ quadrant)
If $x\, sin \theta = y\, sin \, \left( {\theta \,\, + \,\,\frac{{2\,\pi }}{3}} \right) = z\, sin \, \left( {\theta \,\, + \,\,\frac{{4\,\pi }}{3}} \right)$ then :
If $cosA + cosB = cosC,\ sinA + sinB = sinC$ then the value of expression $\frac{{\sin \left( {A + B} \right)}}{{\sin 2C}}$ is