If $x + \frac{1}{x} = 2\,\cos \theta ,$ then ${x^3} + \frac{1}{{{x^3}}} = $

  • A

    $\cos \,\,3\theta $

  • B

    $2\,\cos \,3\theta $

  • C

    $\frac{1}{2}\cos \,3\theta $

  • D

    $\frac{1}{3}\cos \,3\theta $

Similar Questions

If $x + y + z = {180^o},$ then $\cos 2x + \cos 2y - \cos 2z$ is equal to

If $a\tan \theta = b$, then $a\cos 2\theta + b\sin 2\theta = $

The exact value of $\cos \frac{{2\pi }}{{28}}\,\cos ec\frac{{3\pi }}{{28}}\, + \,\cos \frac{{6\pi }}{{28}}\,\cos ec\frac{{9\pi }}{{28}} + \cos \frac{{18\pi }}{{28}}\cos ec\frac{{27\pi }}{{28}}$ is equal to

 

Prove that: $\cos 4 x=1-8 \sin ^{2} x \cos ^{2} x$

Prove that: $\cos 6 x=32 x \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$