If $x + \frac{1}{x} = 2\,\cos \theta ,$ then ${x^3} + \frac{1}{{{x^3}}} = $

  • A

    $\cos \,\,3\theta $

  • B

    $2\,\cos \,3\theta $

  • C

    $\frac{1}{2}\cos \,3\theta $

  • D

    $\frac{1}{3}\cos \,3\theta $

Similar Questions

If $\cos A = \cos B\,\,\cos C$and $A + B + C = \pi ,$ then the value of $\cot \,B\,\cot \,C$ is

In triangle $ABC$, the value of $\sin 2A + \sin 2B + \sin 2C$ is equal to

Which of the following functions have the maximum value unity ?

Number of values of $ x \in \left[ {0,2\pi } \right]$ satisfying the equation $cotx - cosx = 1 - cotx. cosx$

The value of $\left( {1 + \cos \frac{\pi }{9}} \right)\left( {1 + \cos \frac{{3\pi }}{9}} \right)\left( {1 + \cos \frac{{5\pi }}{9}} \right)\left( {1 + \cos \frac{{7\pi }}{9}} \right)$ is