If $x + \frac{1}{x} = 2\,\cos \theta ,$ then ${x^3} + \frac{1}{{{x^3}}} = $
$\cos \,\,3\theta $
$2\,\cos \,3\theta $
$\frac{1}{2}\cos \,3\theta $
$\frac{1}{3}\cos \,3\theta $
If $\cos A = \cos B\,\,\cos C$and $A + B + C = \pi ,$ then the value of $\cot \,B\,\cot \,C$ is
In triangle $ABC$, the value of $\sin 2A + \sin 2B + \sin 2C$ is equal to
Which of the following functions have the maximum value unity ?
Number of values of $ x \in \left[ {0,2\pi } \right]$ satisfying the equation $cotx - cosx = 1 - cotx. cosx$
The value of $\left( {1 + \cos \frac{\pi }{9}} \right)\left( {1 + \cos \frac{{3\pi }}{9}} \right)\left( {1 + \cos \frac{{5\pi }}{9}} \right)\left( {1 + \cos \frac{{7\pi }}{9}} \right)$ is