If $A + B + C = \frac{{3\pi }}{2},$ then $\cos 2A + \cos 2B + \cos 2C = $

  • A

    $1 - 4\cos A\,\cos B\,\cos C$

  • B

    $4\sin A\,\,\sin B\,\,\sin C$

  • C

    $1 + 2\cos A\,\cos B\,\cos C$

  • D

    $1 - 4\sin A\,\,\sin B\,\,\sin C$

Similar Questions

${\sin ^4}\frac{\pi }{8} + {\sin ^4}\frac{{3\pi }}{8} + {\sin ^4}\frac{{5\pi }}{8} + {\sin ^4}\frac{{7\pi }}{8} = $

$A, B, C$ are the angles of a triangle, then ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C - 2\cos A\,\cos B\,\cos C = $

$\frac{1}{{\tan 3A - \tan A}} - \frac{1}{{\cot 3A - \cot A}} = $

Prove that $\frac{\cos 7 x+\cos 5 x}{\sin 7 x-\sin 5 x}=\cot x$

If $A + B + C = {270^o},$ then $\cos \,2A + \cos 2B + \cos 2C + 4\sin A\,\sin B\,\sin C = $