If $A + B + C = \frac{{3\pi }}{2},$ then $\cos 2A + \cos 2B + \cos 2C = $

  • A

    $1 - 4\cos A\,\cos B\,\cos C$

  • B

    $4\sin A\,\,\sin B\,\,\sin C$

  • C

    $1 + 2\cos A\,\cos B\,\cos C$

  • D

    $1 - 4\sin A\,\,\sin B\,\,\sin C$

Similar Questions

If $x + y + z = {180^o},$ then $\cos 2x + \cos 2y - \cos 2z$ is equal to

If $\tan x + \tan \left( {\frac{\pi }{3} + x} \right) + \tan \left( {\frac{{2\pi }}{3} + x} \right) = 3,$ then

$\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ = $

$\sqrt 3 \,{\rm{cosec}}\,{20^o} - \sec \,{20^o} = $

  • [IIT 1988]

The sum of all values of $\theta \, \in \,\left( {0,\frac{\pi }{2}} \right)$ satisfying ${\sin ^2}\,2\theta  + {\cos ^4}\,2\theta  = \frac{3}{4}$ is

  • [JEE MAIN 2019]