3.Trigonometrical Ratios, Functions and Identities
medium

Prove that $\cot 4 x(\sin 5 x+\sin 3 x)=\cot x(\sin 5 x-\sin 3 x)$

Option A
Option B
Option C
Option D

Solution

$L.H.S$ $=\cot 4 x(\sin 5 x+\sin 3 x)$

$=\frac{\cot 4 x}{\sin 4 x}\left[2 \sin \left(\frac{5 x+3 x}{2}\right) \cos \left(\frac{5 x-3 x}{2}\right)\right]$

$\left[\because \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right]$

$=\left(\frac{\cos 4 x}{\sin 4 x}\right)[2 \sin 4 x \cos x]$

$=2 \cos 4 x \cos x$

$R.H.S.$ $=\cot x(\sin 5 x-\sin 3 x)$

$=\frac{\cos x}{\sin x}\left[2 \cos \left(\frac{5 x+3 x}{2}\right) \sin \left(\frac{5 x-3 x}{2}\right)\right]$

$\left[\because \sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)\right]$

$=\frac{\cos x}{\sin x}[2 \cos 4 x \sin x]$

$=2 \cos 4 x \cdot \cos x$

$L.H.S.$ $=$ $R.H.S.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.