If $sin\, \theta = sin\, \alpha$ then $sin\, \frac{\theta }{3}$ =
$sin\, \frac{\alpha }{3}$
$sin \, \left( {\frac{\pi }{3} - \frac{\alpha }{3}} \right)$
$- sin \, \left( {\frac{\pi }{3} + \frac{\alpha }{3}} \right)$
All of the above
The number of values of $\theta$ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that $\theta \neq \frac{n \pi}{5}$ for $n=0, \pm 1, \pm 2$ and $\tan \theta=\cot 5 \theta$ as well as $\sin 2 \theta=\cos 4 \theta$ is
The general solution of $a\cos x + b\sin x = c,$ where $a,\,\,b,\,\,c$ are constants
The number of values of $x$ for which $sin\,\, 2x + cos\,\, 4x = 2$ is
The roots of the equation $1 - \cos \theta = \sin \theta .\sin \frac{\theta }{2}$ is
The number of solutions to $\sin x=\frac{6}{x}$ with $0 \leq x \leq 12 \pi$ is