The solution of the equation $\sec \theta - {\rm{cosec}}\theta = \frac{4}{3}$ is
$\frac{1}{2}[n\pi + {( - 1)^n}{\sin ^{ - 1}}(3/4)]$
$n\pi + {( - 1)^n}{\sin ^{ - 1}}(3/4)$
$\frac{{n\pi }}{2} + {( - 1)^n}{\sin ^{ - 1}}(3/4)$
None of these
The general solution of $\sin x - 3\sin 2x + \sin 3x = $ $\cos x - 3\cos 2x + \cos 3x$ is
If $\sec 4\theta - \sec 2\theta = 2$, then the general value of $\theta $ is
If $L=\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ and $M=\cos ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right),$ then
If $4{\sin ^2}\theta + 2(\sqrt 3 + 1)\cos \theta = 4 + \sqrt 3 $, then the general value of $\theta $ is
If $\cos \theta + \cos 2\theta + \cos 3\theta = 0$, then the general value of $\theta $ is