The number of distinct solutions of $\sec \theta \,\, + \,\,\tan \theta \, = \,\sqrt 3 \,,\,0\,\, \leqslant \,\,\theta \,\, \leqslant \,\,2\pi$

  • A

    $3$

  • B

    $5$

  • C

    $4$

  • D

    None of these

Similar Questions

The roots of the equation $1 - \cos \theta = \sin \theta .\sin \frac{\theta }{2}$ is

The number of all possible values of $\theta$, where $0<\theta<\pi$, for which the system of equations

$ (y+z) \cos 3 \theta=(x y z) \sin 3 \theta $

$ x \sin 3 \theta=\frac{2 \cos 3 \theta}{y}+\frac{2 \sin 3 \theta}{z} $

$ (x y z) \sin 3 \theta=(y+2 z) \cos 3 \theta+y \sin 3 \theta$ have a solution $\left(\mathrm{x}_0, \mathrm{y}_0, \mathrm{z}_0\right)$ with $\mathrm{y}_0 \mathrm{z}_0 \neq 0$, is

  • [IIT 2010]

The general solution of $sin\, x + sin \,5x = sin\, 2x + sin \,4x$ is :

The number of solutions of the given equation $\tan \theta + \sec \theta = \sqrt 3 ,$ where $0 < \theta < 2\pi $ is

The number of real solutions $x$ of the equation $\cos ^2(x \sin (2 x))+\frac{1}{1+x^2}=\cos ^2 x+\sec ^2 x$ is

  • [KVPY 2018]