- Home
- Standard 11
- Mathematics
7.Binomial Theorem
normal
જો $(1 + x) (1 + x + x^2) (1 + x + x^2 + x^3) ...... (1 + x + x^2 + x^3 + ...... + x^n)$
$\equiv a_0 + a_1x + a_2x^2 + a_3x^3 + ...... + a_mx^m$ હોય તો $\sum\limits_{r\, = \,0}^m {\,\,{a_r}}$ ની કિમત મેળવો
A
$n!$
B
$(n + 1) !$
C
$(n - 1)!$
D
એક પણ નહિ
Solution
For the sum of the coefficients, we substitute $x =1 .$
Then we get
$2 \times 3 \times 4 \ldots \times n \times(n+1)$
$=(n+1) !$
Hence $k=1$
Standard 11
Mathematics