$\left( {\begin{array}{*{20}{c}}n\\0\end{array}} \right) + 2\,\left( {\begin{array}{*{20}{c}}n\\1\end{array}} \right) + {2^2}\left( {\begin{array}{*{20}{c}}n\\2\end{array}} \right) + ..... + {2^n}\left( {\begin{array}{*{20}{c}}n\\n\end{array}} \right)$ is equal to
${2^n}$
$0$
${3^n}$
None of these
The sum of all the coefficients in the binomial expansion of ${({x^2} + x - 3)^{319}}$ is
The sum to $(n + 1)$ terms of the following series $\frac{{{C_0}}}{2} - \frac{{{C_1}}}{3} + \frac{{{C_2}}}{4} - \frac{{{C_3}}}{5} + $..... is
$(2n + 1) (2n + 3) (2n + 5) ....... (4n - 1)$ is equal to :
If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, then the value of ${C_0} + 2{C_1} + 3{C_2} + .... + (n + 1){C_n}$ will be
In the expansion of ${(1 + x)^n}$ the sum of coefficients of odd powers of $x$ is