3 and 4 .Determinants and Matrices
hard

If $A$ is an idempotent matrix, then $(I + A)^4$ is (where $I$ is identity matrix of order same as $A$ )

A

$I + 11A$

B

$I + 8A$

C

$I + 17A$

D

$I + 15A$

Solution

Since $A^{2}=A \Rightarrow A^{3}=A \quad \Rightarrow \quad A^{4}=A$

$\therefore \quad(\mathrm{I}+\mathrm{A})^{4}$

$\quad  = {\,^4}{{\rm{C}}_0}{{\rm{I}}^4} + {\,^4}{{\rm{C}}_1}{\rm{A}} + {\,^4}{{\rm{C}}_2}{{\rm{A}}^2} + {\,^4}{{\rm{C}}_3}{{\rm{A}}^3} + {\,^4}{{\rm{C}}_4}{{\rm{A}}^4}$

$=\mathrm{I}+15 \mathrm{A}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.