જો $|z_1| = 2 , |z_2| =3 , |z_3| = 4$ અને $|2z_1 +3z_2 +4z_3| =9$ ,હોય તો $|8z_2z_3 +27z_3z_1 +64z_1z_2|$ ની કિમત મેળવો
$216$
$18$
$64$
એક પણ નહી
જો $(x-i y)(3+5 i)$ એ $-6-24 i$ ની અનુબદ્ધ સંકર સંખ્યા હોય, તો વાસ્તવિક સંખ્યાઓ $x$ અને $y$ શોધો.
બધા $z \in C$ માટે જો $\left| z \right| = 1$ અને ${\mathop{\rm Re}\nolimits} \,z \ne 1$ હોય તો $\alpha \in R$ ના ઉકેલગણ મેળવો કે જેથી $w = \frac{{1 + \left( {1 - 8\alpha } \right)z}}{{1 - z}}$ એ શુધ્ધ કાલ્પનિક સંખ્યા થાય.
સંકર સંખ્યા $\frac{1+2 i}{1-3 i}$ નો માનાંક તથા કોણાંક શોધો.
ધારો કે $z _{1}$ અને $z _{2}$ બંને એવી સંકર સંખ્યાઓ છે કે જેથી $\overline{ z }_{1}=i \overline{ z }_{2}$ અને $\arg \left(\frac{ z _{1}}{\overline{ z }_{2}}\right)=\pi$ તો ............
અહી $a \neq b$ એ બે શૂન્યતરવાસ્તવિક સંખ્યા છે . તો ગણ $X =\left\{ z \in C : \operatorname{Re}\left(a z^2+ bz \right)= a \text { and }\operatorname{Re}\left(b z^2+ az \right)= b \right\}$ ની સભ્ય સંખ્યા મેળવો.